skip to main content


Search for: All records

Creators/Authors contains: "Cox, Daniel T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A 1:16 scaled physical model was constructed to investigate the effectiveness of a seawall, a submerged breakwater, and mangrove forests to mitigate overland flooding and forces on structures in an idealized urban coastal environment. The experiment was performed using tsunami-like waves at different water levels, wave amplitudes, and time scales to simulate long-wave dynamics. The baseline condition (no mitigation), seawall, submerged breakwater, and mangrove forest were tested individually, and the seawall and submerged breakwater were also tested in combination. Wave gauges, acoustic Doppler velocimeters, loadcells, and pressure gauges were used to measure wave elevations, velocities, forces, and pressures on coastal structures, respectively. The performance of these hard structures and mangroves was compared through their effects on wave elevation, particle velocity, and force reduction. Experimental results showed that each protecting structure reduced the horizontal wave forces and inland flow hydrodynamics in the low-water-level case, with a similar performance by the individual seawall, submerged breakwater, and four rows of mangroves. The combined configuration, when the seawall and submerged breakwater were installed simultaneously, caused the most significant maximum force percent reduction by approximately 50%, while mangrove forests arranged in eight rows resulted in a force reduction of 46% in the first building array. However, in the high-water-level cases, the impulsive force measured with the presence of the submerged breakwater was larger than in the baseline case; thus, the submerged breakwater may amplify the impulsive force on the vertical building rows for certain incident wave conditions. Generally, the combined hard structures induced the lowest force reduction factor measured in almost every building row compared to the seawall, submerged breakwater, and mangroves considered separately for all wave conditions and water levels. That means this multi-tiered configuration showed better performance than individual alternatives in reducing horizontal forces inland than the individual alternatives considered separately. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Coastal and nearshore communities face increasing coastal flood hazards associated with climate change, leading to overland flow and inundation processes in the natural and built environments. As communities seek to build resilience to address these hazards, natural infrastructure (e.g., emergent vegetation) and hybrid designs have been identified for their potential to attenuate storm-driven waves and associated effects in developed nearshore regions. However, challenges remain in robustly characterizing the performance of natural systems under a range of incident hydrodynamic conditions and in bridging interdisciplinary knowledge gaps needed for successful implementation. This paper synthesizes field and laboratory results investigating the capacity of Rhizophora mangle (red mangrove) systems to mitigate wave effects. Results indicate that R. mangle forests of moderate cross-shore width have significant effects on wave transformation and load reduction in sheltered inland areas. Opportunities for future interdisciplinary collaborations are also identified. 
    more » « less
  3. Abstract

    This paper presents a new coupled urban change and hazard consequence model that considers population growth, a changing built environment, natural hazard mitigation planning, and future acute hazards. Urban change is simulated as an agent‐based land market with six agent types and six land use types. Agents compete for parcels with successful bids leading to changes in both urban land use—affecting where agents are located—and structural properties of buildings—affecting the building's ability to resist damage to natural hazards. IN‐CORE, an open‐source community resilience model, is used to compute damages to the built environment. The coupled model operates under constraints imposed by planning policies defined at the start of a simulation. The model is applied to Seaside, Oregon, a coastal community in the North American Pacific Northwest subject to seismic‐tsunami hazards emanating from the Cascadia Subduction Zone. Ten planning scenarios are considered including caps on the number of vacation homes, relocating community assets, limiting new development, and mandatory seismic retrofits. By applying this coupled model to the testbed community, we show that: (a) placing a cap on the number of vacation homes results in more visitors in damaged buildings, (b) that mandatory seismic retrofits do not reduce the number of people in damaged buildings when considering population growth, (c) polices diverge beyond year 10 in the model, indicating that many policies take time to realize their implications, and (d) the most effective policies were those that incorporated elements of both urban planning and enforced building codes.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Earthquakes along the Cascadia subduction zone would generate a local tsunami that could arrive at coastlines within minutes. Few studies provide empirical evidence to understand the potential behaviors of local residents during this emergency. To fill this knowledge gap, this study examines residents’ perceptions and intended evacuation behaviors in response to an earthquake and tsunami, utilizing a survey sent to households in Seaside, OR. The results show that the majority of respondents can correctly identify whether their house is inside or outside a tsunami inundation zone. Older respondents are more likely to identify this correctly regardless of any previous disaster evacuation experience or community tenure. The majority of respondents (69%) say they would evacuate in the event of a tsunami. Factors influencing this choice include age, motor ability, access to transportation, and trust in infrastructure resiliency or traffic conditions. While the City of Seaside actively promotes evacuation by foot, 38% of respondents still state they would use a motor vehicle to evacuate. Females and older respondents are more likely to evacuate by foot. Respondents with both higher confidence in their knowledge of disaster evacuation and higher income are more likely to indicate less time needed to evacuate than others. Generally, respondents are more likely to lead rather than follow during an evacuation, especially respondents who report being more prepared for an evacuation and who have a higher perceived risk. This study showcases a unique effort at empirically analyzing human tsunami evacuation lead or follow choice behavior. 
    more » « less
  6. null (Ed.)
  7. Abstract

    A large‐scale laboratory experiment was conducted to evaluate cross‐shore sediment transport and bed response on a sandbar under erosive and accretive field‐scale wave conditions (total of 11 cases). Unprecedented vertical resolution of sediment concentration was achieved through the use of conductivity concentration profilers alongside miniature fiber optic backscatter profilers. Observations were made of intrawave (phase‐averaged) and wave‐averaged cross‐shore sediment flux profiles and transport rates in the lower half of the water column on the crest of a sandbar. The net sediment transport rate was partitioned into suspended sediment (SS) and bed load (BL) components to quantify the relative contributions of SS and BL to the total sediment transport rate. Net SS transport rates were greater than net BL transport rates for the positive (wave crest) half‐cycle in 6 of 11 cases, compared to 100% (11 of 11) for the negative (wave trough) half‐cycle. Net (wave‐averaged) BL transport rates were greater, in magnitude, than net SS transport rates for 7 of the 11 cases. The dominant mode of transport was determined from the ratio of net BL to net SS transport rate magnitudes. The net transport rate was negative (offshore‐directed) when SS dominated and positive (onshore‐directed) when BL dominated. Net BL transport rate correlated well with third moments of free‐stream velocity (r2 = 0.72), suggesting that energetics‐type quasi‐steady formulae may be suitable for predicting BL transport under the range of test conditions.

     
    more » « less